Explicit results for wave scattering and transmission through a rough fluid–fluid interface

نویسنده

  • Tim Lieuwen
چکیده

This paper describes an analysis of reflection and transmission of acoustic waves from an imperfectly reflecting, rough fluid–fluid interface within the Kirchhoff approximation. It presents the results of calculations of the coherent and diffuse field. This work is motivated by the fact that few explicit results of the characteristics of the scattered and transmitted wave field exist in the literature for this problem. For the problem of interest, the surface reflection coefficient depends at each point upon the local angle between the incident wave and the rough surface. For surfaces with statistically independent local surface position and gradient, coherent field calculations show that the correction to constant reflection coefficient analyses is simply a multiplicative factor that depends upon the statistical characteristics of the surface gradient, sound speed and density ratio across the surface. This multiplicative factor is interpreted as an average reflection or transmission coefficient, and , respectively. The principle differences between these results and constant reflection coefficient analyses occur when waves impinge upon regions with higher sound speeds, where total internal reflection may occur. While the wave characteristics of smooth or constant reflection coefficient surfaces change abruptly in the vicinity of the angle of total internal reflection, the average reflection coefficient exhibits a much smoother dependence upon angle of incidence or sound speed ratio for rough surfaces. It is also shown that the direction of maximum diffuse scattering moves relative to its value were the reflection coefficient constant. # 2002 Elsevier Science Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reflection and Transmission of Longitudinal Wave at Micropolar Viscoelastic Solid/Fluid Saturated Incompressible Porous Solid Interface

In this paper, the reflection and refraction of longitudinal wave from a plane surface separating a micropolar viscoelastic solid half space and a fluid saturated incompressible half space is studied. A longitudinal wave (P-wave) impinges obliquely at the interface. Amplitude ratios for various reflected and transmitted waves have been obtained. Then these amplitude ratios have been computed nu...

متن کامل

Elastic Wave Propagation at Imperfect Boundary of Micropolar Elastic Solid and Fluid Saturated Porous Solid Half-Space

This paper deals with the reflection and transmission of elastic waves from imperfect interface separating a micropolar elastic solid half-space and a fluid saturated porous solid half-space. Longitudinal and transverse waves impinge obliquely at the interface. Amplitude ratios of various reflected and transmitted waves are obtained and computed numerically for a specific model and results obta...

متن کامل

Wave Propagation at the Boundary Surface of Inviscid Fluid Half-Space and Thermoelastic Diffusion Solid Half-Space with Dual-Phase-Lag Models

The present investigation deals  with the reflection and transmission phenomenon due to incident plane longitudinal wave at a plane interface between inviscid fluid half-space and a thermoelastic diffusion solid half-space with dual-phase-lag heat transfer (DPLT) and dual-phase-lag diffusion (DPLD) models. The theory of thermoelasticity with dual-phase-lag heat transfer developed by Roychoudhar...

متن کامل

Wave propagation theory in offshore applications

A frequency-wavenumber-domain formulation is presented in this paper for calculation of the Green's functions and wave propagation modes in a stratified fluid body underlain by a layered viscoelastic soil medium. The Green's functions define the solid and fluid displacements and fluid pressures due to uniform disk loads acting in either the soil or fluid media. The solution is in the frequency ...

متن کامل

Applying zoning method for numerical modeling of two immiscible fluid interface motion in an underwater tank using BEM

In this study, boundary element method was used to model sea wave propagation on a hemisphere shape under water tank and oil-water common surface oscillation in the tank. Also, kinematic and dynamic oundary conditions of free surface and common surface of oil and water were discritized by Finite difference method. There were some singularities in BEM method, which were removed by applying zonin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001